Scalable Solvers for Cone Complementarity
Problems in Frictional Multibody Dynamics

Saibal De Eduardo Corona
University of Michigan New York Institute of Technology

Ann Arbor, MI Old Westbury, NY

saibalde @umich.edu ecorona@nyit.edu

Abstract—We present an efficient, hybrid MPI/OpenMP
framework for the cone complementarity formulation of large-
scale rigid body dynamics problems with frictional contact. Data
is partitioned among MPI processes using a Morton encoding in
order to promote data locality and minimize communication. We
parallelize the state-of-the-art first and second-order solvers for
the resulting cone complementarity optimization problems. Our
approach is highly scalable, enabling the solution of dense, large-
scale multibody problems; a sedimentation simulation involving
256 million particles (~324 million contacts on average) was
resolved using 512 cores in less than half-hour per time-step.

I. INTRODUCTION

The need for high-fidelity, scalable simulation frameworks
of granular media has spurred a wave of recent developments
in the efficient implementation of discrete element methods
(DEM) for many-body frictional contact. The DEM approach
tracks the evolution of individual particles due to external
body forces and contact forces caused by non-penetration and
sliding friction.

Most parallel implementations and software packages avail-
able for large-scale granular media simulations employ force
penalty methods (DEM-P) [1]-[3]. For pairs of colliding
objects, they introduce contact force fields which are easy
to implement and inexpensive to evaluate. The fidelity and
efficiency of this approach is, however, often limited by the
artificial stiffness induced by the spring-like forces used to
avoid penetration. A newer class complementarity methods
(DEM-C) avoid this by enforcing the contact constraints geo-
metrically [4]-[8]. For an in-depth analysis and comparison of
DEM approaches, see [9]. In this work, we present an efficient,
hybrid MPI/OpenMP distributed memory implementation of
DEM-C methods for frictional dynamics.

For each pair of objects at contact, DEM-C methods in-
troduce a set of complementarity constraints. Given a time-
stepping scheme, this results in a nonlinear complementar-
ity problem (NCP) that must be solved at each time step.
This NCP may be relaxed into a linear complementarity
problem (LCP) [4], [5]; this approach, however, introduces
non-homogeneous frictional forces. An alternative relaxation
method addressing the limitations of the LCP produces a cone
complementarity problem (CCP) for which a wide array of
quadratic cone optimization solvers have been proposed [7],
[10]-[14]. From extensive comparison in multibody dynamics

Paramsothy Jayakumar
US Army CCDC GVSC
Warren, MI
paramsothy.jayakumar.civ@mail.mil

Shravan Veerapaneni
University of Michigan
Ann Arbor, MI
shravan @umich.edu

problems [15], [16], two families of methods have been shown
to hold the greatest potential. The first-order accelerated pro-
jected gradient descent (APGD) method uses the momentum
from previous iterates to greatly reduce iteration counts for the
gradient descent steps. This feature makes it the method-of-
choice for large-scale systems. Second-order Interior Point (IP)
methods display robust, problem-independent convergence,
making them clear front-runners for small to moderate-sized
systems. In order to remain competitive for large-scale sys-
tems, the acceleration of the Newton step sparse linear systems
involved is required, as proposed in [16].

In [17], the authors review the state-of-the-art in parallel
computing for DEM multibody dynamics simulations. For
moderately large granular media problems, their analysis fa-
vors a hybrid approach combining SIMD (Single Instruction,
Multiple Data) parallelism in the GPU and parallel task
management in the CPU via OpenMP. They have implemented
the DEM-C approach in the Chrono Parallel library, producing
simulation benchmarks of dense granular media for up to
O(10) rigid bodies [18]. For larger granular media prob-
lems as well as for multi-physics problems involving long-
range interactions, the amount of data and variety of tasks
involved necessitate a distributed memory approach; the main
computational bottleneck in this case is data communication.
In [17], a basic Chrono MPI implementation is applied to a
vehicle-terrain problem involving 2 million bodies, employing
64 computing cores.

The hybrid MPI/OpenMP framework presented here aims to
address the challenges involved in efficient distributed memory
implementation of collision detection and resolution via the
CCP complementarity approach. We demonstrate favorable
performance and parallel scaling for problems up to 256
million rigid bodies and approximately 324 million pairwise
contacts employing 512 cores. We reduce the communication
between MPI processes by using Morton IDs and ensure rigid
bodies that are spatially close end up on the same MPI rank.

II. THE CONTACT MODEL

A. Equations of Motion

Consider a granular medium consisting of n rigid bodies.
We use a generalized coordinate system of dimension 67 to
describe its dynamics (three translational and three rotational
degrees of freedom per body). Let ¢ and v € R®" denote

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

the position and velocity of the system in these generalized
coordinates. We describe the time-evolution of these two
variables using Newton’s equations

Mb:fext"‘fcola q:L'U-

Here, fox and f.o € R®" represent the external and contact
forces, M € R67"X6" is the mass matrix and L € R67x6n
maps velocity v to time-derivative of position q.

We model f., using Coulomb’s model of friction coupled
with complementarity model of contact [7]. Suppose there are
m pairs of bodies that are in contact. Consider the ¢-th such
pair; we decompose the contact force acting on this pair along
three directions: one normal to the contact plane and the other
two mutually orthogonal spanning the plane. Let 4; ,,, 451 and
4;,2 be the magnitudes of these components; suppose d; ,,, d; 1
and d;» € R5™ represent these directions in our generalized
coordinate system. We can assume ;,, > 0 without loss of
generality. Then,

m m
Seol = Z’%,ndi,n +Yiadin + Yiodio = ZDi’Aﬁ = D%

i=1 =1

is the total force due to all the contacts. Here

’?: (’:/17"'7’?’”1)7 ’?'L = (’?i,n7ﬁyi,17’?i,2)

is the vector of pairwise contact forces, and

D = [D; D], D;=[din dix di2]
is the so called contact transformation matrix.
In the Coulomb model of friction, each contact force lies

in a convex cone defined by the coefficient of friction u;,

Ci= {7 e R*: /32, +42, < pidin |-

The frictional components satisfy a maximum dissipation
condition

(§i1, 5i2) = argming, o (Yiadi + Fipdi2) ' v.

The complementarity condition implies contact force #; is
inactive unless the i-th pair of bodies comes into contact. Let
¢i(q) be the distance between these bodies in configuration
g. Then, %; , > 0, ¢;(q) > 0 and 4, ,¢:(q) = 0. These three

conditions are denoted together by
0<%in L ¢i(q) >0.

The full model for our system’s dynamics is the differential
variational inequality (DVI) problem:

Mv = fex + DY (la)
0<%in L di(q) >0 (1b)
(Yi,1,%i,2) = argming, .o (Yi1di1 + Yiodio) v (1¢)
q=Lv (1d)

B. Discretization and Cone Complementarity

We use a semi-implicit Euler time-stepping scheme to
discretize the DVI (1). Given position g* and velocity v* at
the k-th time-step with step-size h, we obtain g**! and v**!
by solving a nonlinear complementarity problem (NCP)

P = o £ MY (R fox + D7) (2a)
0<% L@ /h+d] v >0 (2b)
(Vi,1,7%i,2) = argming, ce (vi,1di1 + Yipdiz) 0T (20)

In (2a), we use v = h# as the impulse vector. The right hand
side of (2b) is obtained by discretizing (;ﬁfﬂ using a forward
Euler scheme and dividing it by h for better numerical stability
(this avoids small floating point numbers).

In general, NCPs are very difficult to solve numerically.
However, relaxing the complementarity condition (2b)

0<%inLof/h+d] o
_ Mi\/(dzlka)Q + (dI2vk+1)2 >0

leads to a cone complementarity problem (CCP) [7]
Coylg=Ay+be(C” 3)
where C=C1®---®Cp,, C*=C{ ®---BC,,

A=[Ay;...;A,) b=[b1;...;bn]
A;=D/M~'D b, =®;/h+D/ o
’LA):’Uk:-FhM_lfext (1)2:(53070)

and C = {g; € R3 : 'yiTgl- > 0} is the dual cone of C;. We
denote, with g; = A;~ + b;,

vylg <= 'y;—gizoforallizl:m.

It can be shown that as time-step h — 0, the solution of the
CCP approaches that of the NCP.

III. SOLUTION OF THE COMPLEMENTARITY PROBLEM

In [15], the authors compare performance of several solvers
for the CCP (3). They conclude that accelerated projected
gradient descent (APGD) and symmetric cone interior point
(SCIP) methods are best among the first order and second
order solvers, respectively. In this section, we briefly outline
these methods.

A. Accelerated Projected Gradient Descent

It was shown in [7] that (3) represents the Karush-Kuhn-
Tucker (KKT) optimality conditions for a cone constrained
quadratic optimization problem:

1
minimize fo(7y) = i’yTA'y + b~ subject to y € C. (4)

Gradient descent algorithms are perhaps the simplest family of
iterative solvers for this convex optimization problem. At each
iteration step, one simply moves along the steepest descent
direction (opposite to the current gradient).

We implement the scheme proposed by Nesterov [19]. It ac-
celerates the slow convergence of the ordinary gradient descent
scheme by utilizing the concept of momentum. Essentially, at
each step, the gradient information from previous iterations is
used to modify the step direction: starting with #° = 1 and
y° = ~0, we repeat

AT = y* — a*V o (yF)

gr+1l — 0"/ (0%)2+4-(0%)*
- 2
ghHt — 0F(1-6%)
(9k)2+9k+1

Yt = R g gERL (Rl Ry

We choose the step-size parameter o based on local proper-
ties of fo. Let L be the local Lipschitz constant satisfying

Folw) < fow") + Vi) T(w —) + 5 ly ~ oI

Then, a choice of o < 1 /L ensures that Nesterov’s algorithm
achieves optimal convergence rate among first order methods.
We estimate L at the beginning of each APGD iteration using
a standard line search.

For constrained convex optimization problems, we can
extend this accelerated gradient descent algorithm. We simply
project the iterates v* onto the feasible set:

I =Tle (y* — o*V fo(y")).
Here Il is the orthogonal projection operator onto C. This
modified algorithm is the accelerated projected gradient de-
scent (APGD) method.
B. Symmetric Cone Interior Point Method

The symmetric cone interior point (SCIP) method solves
the CCP (3) by utilizing the Jordan algebraic structure on R3
[14]. We define the Jordan product

_ 1T
T, 0Y; = ﬁ(wi Yi, Tin¥il + Ti1Yin, Tinli2 + Li2VYin)

for xT; = (Qﬁi’n, Ti 1, CCZ"Q), Yi = (yi,n7 Yi 1, yi,g) S R?’. The unit
element is e; = (1/2,0,0). We define the symmetric cone
Ki={xiox; : x; € R?’} ={x;: x> (,731271 + aj?’z)l/Q}.

Let =K1 @ --- @ K,,. Define the maps
T, =diag(...,u;,1,1,...), Ty =diag(..., 1, s, i, .. .).

Denote A = TyAT;1 and b = T,b. Then the CCP (3) is
equivalent to

Koz Ly=Az+becK withx=T,v,y="T,g.
The corresponding optimization problem is given by
minimize x 'y subject to x,y € K.

As per [14], we define the barrier function for the double
cone K U (—K), which gives rise to the potential function
f(@,y) = plog (@' y) + feen(T, y),
x'y/m
2[1;% [det(z;) det(y;)]*/2m

fcen(w> y) = 2mlog

Here det(x;) = 5(z7, — 27, —27,) and p > 0 is the barrier
parameter. The logarithmic barrier f.., penalizes values close
to the boundary.

We construct a sequence (¥, y*) that approach the optimal
value strictly from the interior point of the feasible set. We
enforce feen(z*, y"*) = 0; then the cost function decreases as
rapidly as the sequence approaches the boundary. These points
lie on the central path, where h(z*, y*) = ¥ o y* —ae =0
for some o > 0 (the Jordan product and the unit element is
extended per-contact). We apply Newton step to the function h
with decreasing «; the search direction is obtained by solving

Vih(zk, y*) Vyh(zh y*)] [Az] [ae—xF oy

A v R

To start the iteration, we require a strictly feasible pair
(%, y"). A well-known procedure to achieve this involves
adding one artificial variable, augmenting the 3m-variable
complementarity problem to a 3m + 1 variable problem with
a straight-forward solution [14].

As the iterates approach the boundary of the feasible set, the
linear system becomes increasingly ill-conditioned. This issue
can be resolved by applying Nesterov-Todd scaling [20], which
rescales the space in which the symmetric cone lies. This leads
to a linear system of the form

[A+P(w)Az =7

where P(w) is 3 x 3 block-diagonal and » € R3™ is a vector
obtained from reducing the Newton system using Schur’s
complement [14]. The i-th block of P is given by

P; (’U.Jl> = 'wi'w;r — det(wi)J
with J = diag(1,—1,—1) and

yf + Nidx} \ [det(yi)

) 1 T k\
Vb Tul +oyaeteh dayr)) @)
Once we solve for the search direction Ax and Ay, we pick
a step-size 6 € (0, 1] such that ¥ +0Az, y*+0Ay € int(K);
we use a standard backtracking line search. Finally, we update

the iterates:

f 1 = 2F + oAz,

w; =

yk+1 — yk 4 aAy
C. Convergence Criteria

We choose our convergence criteria based on the original
CCP (3) following [14], [15]. Given a primal-dual pair (v, g)
with g = A~ + b, we compute three residuals

e 7, € R measures violation of the primal constraint:

2 2 \1/2
rpi = max{0, (v; 1 +7i2) /2 iYin }

e 174 € R™ measures violation of the dual constraint:
1/2
12— gin/ i}

e 7. = |7 g|/m measures violation of the complementar-

ity condition.

We stop the iterative solvers when the residual reaches some
prescribed tolerance: max {7/, |7l oo, 7e } < Tres.

ra; = max{0, (g7, + g7 o)

N S
1 1| 114411 AT e
10 11 B %
o B R T
" A =
10001001 | 1 1 ole b®
0 1 | otgefotil AR T
4 % Il
N e | | #e
00066001 | 0 1 "l ‘o

Fig. 1. Example of Morton ordering in two dimensions. (Left) Construction
of Morton IDs by interlacing binary expansion of coordinates, and the Z-order
on the second level discretization. (Right) A point cloud with octree bounding
boxes and imposed Morton ordering on the points. We show ‘equi’-partition
of the body list into two parts using different colors.

IV. PARALLEL IMPLEMENTATION
A. Spatial Partitioning

Simulation of large-scale particulate systems is ultimately
limited by memory, as storing all bodies in the same processor
becomes intractable. The message passing interface (MPI)
library provides a well-known framework to overcome this;
data associated to the set of bodies must be partitioned
among the available MPI processes in a way that minimizes
communication between them, e.g. when determining particle
pairs likely to collide in the next time-step. Minimizing this
communication overhead is crucial in designing fast rigid body
simulations.

One way to ensure minimal communication is by ensuring
that spatially close bodies end up on the same MPI process.
One can achieve this very naturally by using tree based, hierar-
chical spatial partitioning schemes, e.g. octree, k-D tree [21].
In our implementation, we use a Morton-code based octree
partitioning scheme [22]; it achieves good spatial locality with
very low computational cost.

Morton ranking induces linear order on a multi-dimensional
particle cloud. As an example, let us consider a point
(z1,22,73) € [0,1)® in three dimensions. Given the k-
length binary expansions of the coordinates x; = 0.b;1 ... bk,
we compute the 3k-bit Morton index by interleaving the
bits: I = b31b21011 ... b3kborbig. Sorting the particle cloud
according to these indices creates a zigzag ordering of the
points (see Figure 1) and ensures that points that are close in
Morton order are also spatially nearby.

Once the list of bodies is sorted according to their Morton
ranks, we partition this list equally, and assign each part to
one MPI rank. Figure 2 illustrates this partitioning for 40,000
unit spheres, contained in a 100 x 100 x 50 box, among 4 MPI
processes.

B. Collision Detection

Once bodies are assigned to MPI processes, we construct
the collision pairs. This is done in two phases. In the broad
phase, the list of potential contacts within each MPI rank is
pruned by re-using the octree structure from the partitioning

Fig. 2. Distribution of 40,000 spheres with unit radius in a 100 x 100 x
50 box (volume fraction ~ 33.5%), among 4 MPI processes, using Morton
coding. The spheres belonging to the last rank are suppressed in the figure to
emphasize interface structure.

phase, and eliminating pairs of bodies that are far away. In
the narrow phase, we test for contact between the true rigid
bodies. This brings down the O(n?) complexity of the naive
algorithm to O(nlogn), where n is the number of bodies in
a MPI process. We further accelerate this by using OpenMP
task-based parallelism. For inter-process collisions, we assign
the collision pair i = (i1,42), i1 < iz to the MPI process
containing the 7;-th body.

C. Collision Resolution

For each collision pair i, we store distance ¢§, unknown
impulse -y; and contact transformation matrix D; on the same
MPI rank that contains the collision pair. We use a distributed
memory linear algebra library to manage the different parts of
the distributed vectors ® and -y, and the distributed matrix D.

In APGD, the main bottleneck is matrix-vector multiplica-
tions (mat-vec) with the collision matrix A = DTM™!D.
We need one mat-vec per iteration to compute the gradient
g = A~ + b. Additionally, in every iteration, we use a
backtracking search to estimate the Lipschitz constant; this
requires one mat-vec per backtracking step.

We exploit the sparsity structure of the three factor matrices
to create an efficient mat-vec implementation. For granular
media simulations, the mass matrix M is 6 x 6 block diagonal,
and the columns of D contain at most 12 non-zero entries
(6 per body in the corresponding collision pair). This allows
us to store M~! and DT in compressed row storage (CRS)
format. The partitioning of the bodies and collision pairs
among the MPI ranks also induce a natural partitioning of the
rows of these matrices among the MPI processes. As long
as ~ is partitioned using the same schemes, matrix vector
multiplication will be fast (see Figure 3).

In SCIP, the bottleneck is solving a linear system at each
iteration. We currently use a direct sparse LU factorization of
matrix A; for this purpose, we must build it explicitly.

(
L]
 1se 120
/ﬁ o -
) N
14 15
Ve vad
12 R13
VR AN
N~ 10)
([\4 T
Al St
e g SN
/) h
e/
15

(a) Distribution of 15 bodies (left) with 20 collision pairs (right) among
3 MPI ranks. The colors indicate which rank owns the bodies/collision
pairs.

DT

(b) Sparsity structure of the corresponding collision matrix (solid dots
indicate non-zero blocks). The inverse mass matrix M~ is 6 x 6 block
diagonal. The columns of the contact transformation matrix D encode
information about collision pairs. E.g. the 8 collision occurs between
bodies 5 and 6; this corresponds to non-zero 6 X 3 blocks in the gth
‘column’.

Fig. 3. Example of distributed construction of the collision matrix

The sparsity structure of A is dependent on contact struc-
ture; the 3 x 3 non-zero blocks correspond to contacts that share
a body. In [16], a tensor train preconditioner exploiting this
structure was proposed as an acceleration for IP methods. We
aim to implement this in our hybrid MPI/OpenMP framework
in future work.

V. NUMERICAL EXPERIMENTS

In this section, we describe the results from the numerical
experiments we conducted to investigate the performance
and scalability characteristics of our implementation of cone-
complementarity collision solver.

A. Architecture and Implementation

We ran our simulations on the Flux and Great Lakes clusters
at University of Michigan. Each compute node in Flux is
equipped with two 12-core 2.5 GHz Intel Xeon E5-2680 v3
processors and 128 GB RAM. Compute nodes in Great Lakes
are equipped with two 18-core 3.0 GHz Intel Xeon Gold 6154
processors and 192 GB RAM.

The code is written in C++ and is built on top of Trilinos
[23], Msgpack [24], Eigen [25] and TRNG [26] libraries. The
Trilinos library provides a large number of data structures to
manage distributed vectors and sparse matrices and imple-
ments efficient sparse mat-vecs. It also provides an interface

TABLE I
NUMBER OF ITERATIONS REQUIRED TO REACH PRESCRIBED RESIDUAL
TOLERANCE FOR APGD AND SCIP SOLVERS

Number of Spheres
25,000 100,000
Residual APGD SCIP | APGD SCIP
Ties = 107" 409 45 435 47
Tres = 1072 433 50 451 52
Tres = 1073 470 54 506 56
Tres = 1074 509 57 521 58

to the SuperLU direct solver package [27]. Msgpack is a
binary serialization library; we use it to facilitate interchange
of rigid bodies between MPI processes. We use the three
dimensional vectors and quaternion classes from the Eigen
library to capture the motion of the rigid bodies. Finally, we
use TRNG to set up the random initial configurations (e.g.
radius and location of the spheres).

B. Simulation Setup

In our experiments, we simulate sedimentation of rigid
bodies under gravity. Our setup is very simple: we place a large
number of spheres (radius = 0.01 m) inside a 3D rectangular
box, and release them from rest. The spheres experience
constant acceleration due to gravity (g = 9.81 m/s?). In the
course of the simulation, the spheres collide with each other
and with the interior walls of the box.

C. Comparison of APGD and SCIP Solvers

We compared our APGD and SCIP implementations on
simulations with 25,000 and 100,000 rigid bodies. We keep the
number of collisions proportional to the number of bodies; we
fix the box height at 0.5 m and assign 0.04 m? base area per
thousand spheres. The spheres occupy approximately 20.94%
of the box volume. We allow a maximum of 10,000 solver
iterations per timestep, and choose a timestep of h = 1073 s.
We run these simulations on a single node of the Flux cluster
using 16 cores.

Table I records the number of iterations required to reach
a prescribed tolerance in one timestep. As we can see, SCIP
converges using fewer iterations compared to APGD, which
is consistent with the findings in [15]. However, since each
SCIP iteration requires a linear solve, APGD converges faster
w.r.t. runtime.

D. Scalability of APGD Solver

We tested the scalability of the collision detection and
resolution phases of our algorithm, using the APGD iterative
solver. We used a timestep size h = 2.5 X 103 s, residual
tolerance Tyes = 10~2 and allowed a maximum 100,000 solver
iterations. In these simulations, the box height was 0.6 m
and 0.036 m? base area was assigned per thousand spheres
(approximately 19.39% volume fraction). Since our primary
goal is to test performance of the distributed memory aspect,
we only use 4 cores per node in these simulations. We ran
these on the Great Lakes cluster.

Collision Detection Time (s)

S ETTIITET

8 16 32 64 128 256
Number of Cores

Fig. 4. Scalability of collision detection algorithm. The solid lines connect
simulations with same problem size (strong scaling), and the dashed lines
connect simulations with same problem size per core (weak scaling).

3200.0 4

1600.0

800.0

400.0

200.0

100.0

50.0

Collision Resolution Time (s)

25.0

BIEERXEREE;

8 16 32 64 128 256
Number of Cores

Fig. 5. Scalability of collision resolution algorithm with APGD optimization
solver. The solid lines connect simulations with same problem size (strong
scaling), and the dashed lines connect simulations with same problem size
per core (weak scaling).

We ran an array of simulations using 1 to 128 million
particles and 4 to 256 cores. The scaling results for the
collision detection and collision resolution phases are shown
in Figure 4 and Figure 5, respectively. Solid lines in the
figures connect simulations with the same problem size (strong
scaling). We observe that time required to solve a fixed size
problem drops as fast as the number of processors is increased.

The dashed lines in these two figures connect simulations
with the same number of bodies per core (weak scaling). We
see that the collision detection time remains almost constant
as we increase the number of cores (and the problem size),
demonstrating near-perfect scalability. On the other hand,
collision resolution times increase slowly with the number of
cores. The main reason for this is: as we increase the problem
size, the number of APGD iterations required for convergence
also increases (see Table II). This results in longer collision
resolution time. Nonetheless, we note that the rate of increase
in collision resolution time is considerably slower than the
increase is problem size (less than 2-fold increase in runtime
compared to 64-fold increase in problem size).

Our largest simulation was a sedimentation test with 256

TABLE II
AVERAGE ITERATION COUNT OF APGD IN WEAK SCALABILITY TESTS

Cores 4 8 16 32 64 128 256

Spheres (x10%) 2 4 8 16 32 64 128
Collisions (x109) 5 10 19 39 77 155 309
Iterations 713 763 748 788 836 803 832

million bodies. We ran it on the Flux cluster with 64 nodes,
each node using 8 cores (a total of 512 cores), with timestep
h =2.5x 1072 s and tolerance Ts = 5 x 1072, On average,
324 million contacts were detected in 2 minutes, and collisions
were resolved in 24 minutes per time step.

VI. CONCLUSIONS

Simulating the dynamics of a system of rigid bodies with
the CCP formulation of frictional contact involves efficient
collision detection and the solution of a second order cone-
constrained quadratic optimization problem. In this article, we
proposed a framework for this problem featuring a hybrid
distributed/shared memory computing model in both stages.

We used the Morton ordering to partition the rigid bodies
among MPI ranks. This imposes data locality, that is, bodies
that are located close to each other end up on the same rank. In
turn, this limits the communication overhead in the collision
detection phase significantly. Our experiments show that this
phase scales almost perfectly with the number of processors.

Using a very simple strategy to divide the collision pairs
among MPI ranks, we ensure proper load balancing. We im-
plemented distributed memory versions of the accelerated pro-
jected gradient descent (APGD) and symmetric-cone-interior
point (SCIP) solvers for the optimization problems exploiting
the sparsity structure of the collision matrix. Additionally, we
built in shared memory parallelism within each MPI rank using
OpenMP, providing additional acceleration for these solvers.

The first order APGD solver relies on matrix-vector prod-
ucts for the collision matrix, with performance reliant on
the efficiency of Lipschitz constant estimation and growth of
iteration counts with problem size. Overall, this solver shows
extremely good scaling and performance.

The second order SCIP solver relies on the solution of a
sparse linear system per iteration, resulting in costly solution
for large numbers of collisions. Consequently, our implemen-
tation, while being more robust compared to the first order
APGD solver, cannot compete in terms of performance. In fu-
ture work, we plan to incorporate a tensor-train preconditioned
iterative linear solve in our hybrid computing framework.

ACKNOWLEDGEMENTS

This work was supported by the Automotive Research
Center (ARC) in accordance with Cooperative Agreement
WS56HZV-19-2-0001 with U.S. Army CCDC Ground Vehicle
Systems Center and the National Science Foundation under
grant DMS-1454010. This research was also supported in part
through computational resources and services provided by the
Advanced Research Computing Center at the University of

Michigan. We thank Dhairya Malhotra and Wen Yan for many
helpful discussions.

DISTRIBUTION STATEMENT A. Approved for public
release; distribution unlimited. OPSEC #2681.

[1]
[2]

[3]

[4]

[5]

[6]

[7

—

[8]

[9

—

[10]

(1]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

REFERENCES

E. Coumans, “Bullet physics library,” https://bulletphysics.org.

R. Berger, C. Kloss, A. Kohlmeyer, and S. Pirker, “Hybrid parallelization
of the LIGGGHTS open-source DEM code,” Powder technology, vol.
278, pp. 234-247, 2015.

H. Mazhar, T. Heyn, A. Pazouki, D. Melanz, A. Seidl, A. Bartholomew,
A. Tasora, and D. Negrut, “Chrono: a parallel multi-physics library
for rigid-body, flexible-body, and fluid dynamics,” Mechanical Sciences,
vol. 4, no. 1, pp. 49-64, 2013.

D. E. Stewart and J. C. Trinkle, “An implicit time-stepping scheme
for rigid body dynamics with inelastic collisions and coulomb friction,”
International Journal for Numerical Methods in Engineering, vol. 39,
no. 15, pp. 2673-2691, 1996.

M. Anitescu and F. A. Potra, “Formulating dynamic multi-rigid-body
contact problems with friction as solvable linear complementarity prob-
lems,” Nonlinear Dynamics, vol. 14, no. 3, pp. 231-247, 1997.

M. Anitescu, “Optimization-based simulation of nonsmooth rigid multi-
body dynamics,” Mathematical Programming, vol. 105, no. 1, pp. 113—
143, 2006.

M. Anitescu and A. Tasora, “An iterative approach for cone complemen-
tarity problems for nonsmooth dynamics,” Computational Optimization
and Applications, vol. 47, no. 2, 2010.

A. Tasora and M. Anitescu, “A convex complementarity approach
for simulating large granular flows,” Journal of Computational and
Nonlinear Dynamics, vol. 5, no. 3, p. 031004, 2010.

A. Pazouki, M. Kwarta, K. Williams, W. Likos, R. Serban, P. Jayakumar,
and D. Negrut, “Compliant contact versus rigid contact: A comparison
in the context of granular dynamics,” Physical Review E, vol. 96, no. 4,
p. 042905, 2017.

H. Mazhar, T. Heyn, D. Negrut, and A. Tasora, “Using Nesterov’s
method to accelerate multibody dynamics with friction and contact,”
ACM Transactions on Graphics (TOG), vol. 34, no. 3, p. 32, 2015.

T. Heyn, M. Anitescu, A. Tasora, and D. Negrut, “Using Krylov
subspace and spectral methods for solving complementarity problems
in many-body contact dynamics simulation,” International Journal for
Numerical Methods in Engineering, vol. 95, no. 7, pp. 541-561, 2013.
C. Petra, B. Gavrea, M. Anitescu, and F. Potra, “A computational
study of the use of an optimization-based method for simulating large
multibody systems,” Optimization Methods & Software, vol. 24, no. 6,
pp. 871-894, 2009.

L. Fang, “A primal-dual interior point method for solving multibody dy-
namics problems with frictional contact,” Ph.D. dissertation, University
of Wisconsin—Madison, 2015.

J. Kleinert, Simulating granular material using nonsmooth time-stepping
and a matrix-free interior point method. Fraunhofer Verlag, 2015.

D. Melanz, L. Fang, P. Jayakumar, and D. Negrut, “A comparison
of numerical methods for solving multibody dynamics problems with
frictional contact modeled via differential variational inequalities,” Com-
puter Methods in Applied Mechanics and Engineering, 2017.

E. Corona, D. Gorsich, P. Jayakumar, and S. Veerapaneni, “Tensor
train accelerated solvers for nonsmooth rigid body dynamics,” Applied
Mechanics Reviews, 2019.

D. Negrut, R. Serban, H. Mazhar, and T. Heyn, “Parallel computing
in multibody system dynamics: why, when, and how,” Journal of
Computational and Nonlinear Dynamics, vol. 9, no. 4, p. 041007, 2014.
D. Negrut, A. Tasora, M. Anitescu, H. Mazhar, T. Heyn, and A. Pazouki,
“Solving large multibody dynamics problems on the gpu,” in GPU
Computing Gems Jade Edition. Elsevier, 2012, pp. 269-280.

Y. E. Nesterov, “A method for solving the convex programming problem
with convergence rate o(1/k*2),” Sov. Math. Dokl., vol. 27, no. 2, pp.
372-376, 1983.

Y. E. Nesterov and M. J. Todd, “Self-scaled barriers and interior-
point methods for convex programming,” Mathematics of Operations
Research, vol. 22, no. 1, 1997.

J. Schauer and A. Niichter, “Collision detection between point clouds
using an efficient kd tree implementation,” Advanced Engineering In-
formatics, vol. 29, no. 3, pp. 440-458, 2015.

[22]

(23]

[24]
[25]
[26]

(271

T. M. Chan, “Closest-point problems simplified on the RAM,” in /3th
ACM-SIAM Symposium on Discrete Algorithms, 2002.

M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu,
T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps,
A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring,
A. Williams, and K. S. Stanley, “An overview of the trilinos project,”
ACM Transactions on Mathematical Software, vol. 31, no. 3, 2005.

S. Furuhashi et al., “Msgpack,” https://msgpack.org.

G. Guennebaud, B. Jacob ef al., “Eigen v3,” http://eigen.tuxfamily.org.
H. Bauke and S. Mertens, “Random numbers for large scale distributed
monte carlo simulations,” Physical Review E, vol. 75, no. 6, 2007.

X. S. Li, “An overview of SuperLU: Algorithms, implementation, and
user interface,” ACM Transactions on Mathematical Software, vol. 31,
no. 3, 2005.

